Hydroxyphosphinidene complexes. Novel organometallic cluster acids and precursors of coordinated phosphorus monoxide

Weibin Wang ${ }^{\text {a }}$, Gary D. Enright ${ }^{\text {a }}$, Jennifer Driediger ${ }^{\text {a }}$, Arthur J. Carty ${ }^{\text {a.b. * }}$
${ }^{1}$ Steacie Institute for Molecular Sciences, National Research Council of Canada, I00 Sussex Drive, Ottawa, Ontario, Canada KlA OR6
${ }^{b}$ Department of Chemistry, University of Ottawa, 1125 Colonel By Drice, Ottawa, Ontario, Canada KIS 5 B6

Received 14 February 1997; accepted 15 February 1997

Abstract

The hydroxyphosphinidene cluster $\mathrm{Ru}_{4}(\mathrm{CO})_{13}\left(\mu_{3}-\mathrm{POH}\right) 2$, a member of a new class of organometallic acids has been synthesised and structurally characterised. The $\mu_{3}-\mathrm{POH}$ ligand which caps an open Ru_{3} face of 2 can be deprotonated by base to give a phosphorus monoxide cluster anion $\left[\mathrm{Ru}_{4}(\mathrm{CO})_{12}\left(\mu_{3} \mathrm{PO}\right)\right]-4$. Capping of the $\mathrm{Ru}_{3} \mathrm{P}$ face of 2 with $\mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$ affords the mixed metal cluster acid $\mathrm{Ru}_{4} \mathrm{Pt}(\mathrm{CO})_{13}\left(\mathrm{PPh}_{3}\right)\left(\mu_{4}-\mathrm{POH}\right) 5$ 5. © 1997 Elsevier Science S.A.

Keywords: Ruthenium; Platinum; Phosphorus; Hydroxy; Phosphinidene

The phosphinidene group PR is a highly versatile, strongly coordinating 4-electron ligand for polynuclear chemistry with the capacity to bridge two metals, cap open or closed three or four metal faces [1-9] and provide π-electrons for delocalised metallocycles [10,11]. The seminal contributions of Huttner and his co-workers to this field are well recognised [12]. One interesting class of phosphinidene complexes which has not been explored is that in which the R substituent in μ-PR is a hydroxy group [13]. By analogy with their inorganic counterparts the hydroxyphosphines (e.g., $\mathrm{P}(\mathrm{OH})_{3}$), clusters with $\mu_{2 \cdot 4}-\mathrm{P}(\mathrm{OH})$ ligands $\mathrm{L}_{n} \mathrm{M}_{m}[\mu-$ $\mathrm{P}(\mathrm{OH})]$ might be expected to have acidic properties and hence via deprotonation form conjugate bases $\left[\mathrm{L}_{n} \mathrm{M}_{m}(\mu-\mathrm{PO})\right]^{-}$and salts [cat]$\left.] \mathrm{L}_{n} \mathrm{M}_{m}(\mu-\mathrm{PO})\right]$ containing coordinated phosphorus monoxide PO. In this communication we describe the synthesis and structural characterisation of one such hydroxyphosphinidene complex $\mathrm{Ru}_{4}(\mathrm{CO})_{13}\left(\mu_{3}-\mathrm{POH}\right) 2$ and demonstrate its conversion to the phosphorus monoxide cluster anion $\left[\mathrm{Ru}_{4}(\mathrm{CO})_{12}\left(\mu_{3}-\mathrm{PO}\right)\right]-4$ and to the mixed metal hydroxyphosphinidene cluster $\mathrm{Ru}_{4} \mathrm{Pt}(\mathrm{CO})_{13}\left(\mathrm{PPh}_{3}\right)\left(\mu_{4}-\mathrm{POH}\right) 5$ via capping of an $\mathrm{Ru}_{3} \mathrm{P}$ face in 2 with $\mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$. An extensive and novel organometallic chemistry for hydroxyphosphinidene complexes can be confidently predicted.

[^0]We have previously shown that the $\mathrm{P}-\mathrm{N}$ bonds in diisopropylaminophosphinidene clusters such as 60electron $\mathrm{M}_{4}(\mathrm{CO})_{12}\left(\mu_{3}-\mathrm{PNPr}_{2}^{i}\right)(\mathrm{M}=\mathrm{Ru}$, Os) are susceptible to hydrolytic cleavage on silica gel, thus providing a route to phosphorus monoxide complexes [14,15]. Plausible intermediates in these reactions are hydroxyphosphinidene species. We have now succeeded in synthesising and isolating a representative $\mu_{3}-\mathrm{POH}$ cluster via the protonation of $\mathrm{Ru}_{4}(\mathrm{CO})_{13}\left(\mu_{3}-\operatorname{PNPr}_{2}^{i}\right) \mathbf{1}$ with strong acid in the presence of traces of water. Treatment of a solution of the 62-electron nido cluster $\mathrm{Ru}_{4}(\mathrm{CO})_{13}\left(\mu_{3}-\mathrm{PNPr}_{2}^{i}\right)(301 \mathrm{mg}, 0.335 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ dropwise with $\mathrm{HBF}_{4} \cdot \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}(0.117$ ml of a 85% solution) followed by removal of solvent, extraction and repeated recrystallisation from undried hexane over 2 days afforded $\mathrm{Ru}_{4}(\mathrm{CO})_{13}\left(\mu_{3}-\mathrm{POH}\right) 2$ in 53% overall yield ${ }^{1}$ based on 1 . Cluster 2 is a covalent molecule, soluble in hexane and sublimable in vacuo. As far as we are aware, 2 along with its osmium analogue [13] are the first examples of hydroxyphosphinidene clusters.

The pattern of the IR $[\nu(\mathrm{CO})]$ spectrum of 2 is very similar to that of 1 suggesting that the skeletal geometry

[^1]

Fig. 1. Molecular structure of $\mathrm{Ru}_{4}(\mathrm{CO})_{13}\left(\mu_{3}-\mathrm{POH}\right)$ showing the hydrogen bonding between symmetry related molecules. Selected bond lengths: $R u(1)-R u(2)=2.802(1), \quad R u(1)-R u(3)=2.914(1), \quad R u(2)-R u(3)=2.924(1), \quad R u(2)-R u(4)=2.830(1), \quad R u(3)-R u(4)=2.859(1), \quad R u(1)-P(1)=$ $2.278(1), \mathrm{Ru}(2)-\mathrm{P}(1)=2.367(1), \mathrm{Ru}(4)-\mathrm{P}(1)=2.266(1), \mathrm{P}(1)-\mathrm{O}(1)=1.627(2)$.
of 2 is essentially the same as that of the precursor 1. A single crystal X-ray analysis ${ }^{2}$ confirmed this hypothesis. The molecular structure of 2 (Fig. 1) consists of a distorted nido square pyramidal $\mathrm{Ru}_{4} \mathrm{P}$ framework with the phosphorus atom of the phosphinidene group occupying a basal position and capping an open face of one axial and two basal $\mathrm{Ru}(\mathrm{CO})_{3}$ units. The remaining vertex of the square pyramid is an $\mathrm{Ru}(\mathrm{CO})_{4}$ fragment. A major difference is the replacement of the NPr_{2}^{i} group in 1 by a hydroxy group. The $\mathrm{P}-\mathrm{O}$ bond length $(1.627(2) \AA)$ in 2 is significantly longer than in phosphine oxides (e.g. $\mathrm{Me}_{3} \mathrm{PO} \mathrm{P}-\mathrm{O}=1.48 \AA$) [16] and in phosphorus monoxide clusters (e.g. $\left[\mathrm{Et}_{4} \mathrm{~N}\right]\left[\mathrm{Os}_{4}(\mathrm{CO})_{12}\left(\mu_{3}-\mathrm{PO}\right)\right] \quad \mathrm{P}-\mathrm{O}=1.48 \AA$ A) [15] but similar in magnitude to the P -OMe bond length in $\mathrm{Ru}_{4}(\mathrm{CO})_{13}\left(\mu_{3}\right.$-POMe) $3(\mathrm{P}-\mathrm{O}=1.61 \AA)[17]^{3}$. This

[^2]indicates that the $\mathrm{P}-\mathrm{O}$ bond in 2 is essentially a single bond. Attempts to detect the hydrogen atom of the hydroxyphosphinidene group by spectroscopic methods were only partially successful. In the IR spectrum only a broad, weak band at $3583 \mathrm{~cm}^{-1}$ provided any evidence for $\nu(\mathrm{O}-\mathrm{H})$ vibrations and ${ }^{1} \mathrm{H}$ NMR studies even at low temperatures failed to detect a $\mathrm{P}-\mathrm{O}-\mathrm{H}$ resonance probably due to rapid exchange. The X-ray analysis did however provide strong evidence for the presence of a $\mathrm{P}-\mathrm{OH}$ group. After anisotropic refinement of all the non-hydrogen atoms, the peak of highest intensity in a Fourier difference map ($\mathrm{H}(1)$ in Fig. 1) is $0.96 \AA$ from a $\mathrm{P}-\mathrm{O}$ oxygen atom $(\mathrm{O}(1))$ and $1.86 \AA$ from a second, symmetry-related $\mathrm{P}-\mathrm{O}$ oxygen atom. The next 10 peaks are all close to heavy atoms or carbonyl carbon atoms. We conclude that the $\mathrm{P}-\mathrm{OH}$ hydrogen atom $\mathrm{H}(1)$ is hydrogen bonded to $\mathrm{O}\left(1^{\prime}\right)$ of a second hydroxyphosphinidene cluster as illustrated in Fig. 1. A similar hydrogen bond relationship between $\mathrm{O}\left(1^{\prime}\right)-\mathrm{H}\left(\mathrm{l}^{\prime}\right)$ and $\mathrm{O}(1)$ in the two symmetry related clusters exists. This structural data together with the P-O bond length and the results of HYDEX [18] potential energy calculations which provided no indication of the presence of either terminal or bridging metal hydrides, is strong evidence that the compound $\mathbf{2}$ is indeed a hydroxyphosphinidene cluster. Further confirmation of the nature of 2 was obtained from its reaction with bases. Treatment of 2 with HNPr_{2}^{i} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded $\left[\mathrm{H}_{2} \mathrm{NPr}_{2}^{i}\right]\left[\mathrm{Ru}_{4}(\mathrm{CO})_{12}\left(\mu_{3}-\mathrm{PO}\right)\right]\left(\left[\mathrm{H}_{2} \mathrm{NPr}_{2}^{i}\right] 4\right)$ in high yield, identified by comparison with an authentic sample of the known compound synthesized via a different route [14,15]. Thus deprotonation of the acid and loss of a carbonyl converted 2 to a derivative of its base, the phosphorus monoxide cluster anion $\left[\mathrm{Ru}_{4}(\mathrm{CO})_{12}\left(\mu_{3}-\right.\right.$ $\mathrm{PO})]^{-}$. Treatment of 2 with methanol produced the methoxyphosphinidene cluster $\mathrm{Ru}_{4}(\mathrm{CO})_{13}\left(\mu_{3}\right.$-POMe) 3 via OH for OMe exchange [17]. The structure [17] of 3 is closely related to that of $\mathbf{1}$ and 2.

Fig. 2. Molecular structure of $\mathrm{Ru}_{4} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})_{13}\left(\mu_{4}-\mathrm{POH}\right)$. Selected bond lengths: $\operatorname{Pt}(1)-\mathrm{Ru}(1)=2.974(1), \operatorname{Pt}(1)-\mathrm{Ru}(3)=2.762(1)$, $\operatorname{Pt}(1)-\mathrm{Ru}(4)=2.967(1), \quad \mathrm{Ru}(1)-\mathrm{Ru}(2)=2.866(1), \quad \mathrm{Ru}(1)-\mathrm{Ru}(3)=$ $2.845(1), \quad \mathrm{Ru}(2)-\mathrm{Ru}(3)=2.881(1), \mathrm{Ru}(2)-\mathrm{Ru}(4)=2.892(1), \mathrm{Ru}(3)-$ $R u(4)=2.808(1), \quad \operatorname{Pt}(1)-P(1)=2.278(3), R u(1)-P(1)=2.322(3)$, $\mathrm{Ru}(2)-\mathrm{P}(1)=2.305(3), \quad \mathrm{Ru}(4)-\mathrm{P}(1)=2.330(3) \quad \mathrm{P}(1)-\mathrm{O}(1)=1.604(5)$ A.

The nido, 7 skeletal pair, 5 vertex square pyramidal geometry of 2 suggests the possibility of capping the $\mathrm{Ru}_{3} \mathrm{P}$ face with a second transition metal fragment to generate new $\mu_{3}-\mathrm{POH}$ clusters. Reaction of 2 with one equivalent of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a green solution. Chromatography on TLC plates, extraction of the green band and recrystallisation via slow evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded $\mathrm{Ru}_{4} \mathrm{Pt}(\mathrm{CO})_{13}\left(\mathrm{PPh}_{3}\right)\left(\mu_{4}-\mathrm{POH}\right)$ 5 in 55% yield ${ }^{4}$. The molecular structure ${ }^{5}$ of the 74 -electron cluster 5 (Fig. 2) displays a closo octahedral $\mathrm{Ru}_{4} \mathrm{PtP}$ skeleton with the $\mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$ fragment capping the open $\mathrm{Ru}_{3} \mathrm{P}$ face of the precursor 2 . The reaction thus involves the loss of ethylene from platinum, exchange of one PPh_{3} ligand for CO and coordination of the $\mathrm{d}^{10}-\mathrm{Pt}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$ fragment to the ruthenium cluster. Within the $\mathrm{Ru}_{4} \mathrm{PtP}$ skeleton the $\mathrm{Ru}-\mathrm{Ru}$ distances (2.808(1)-2.892(1) \AA) lie within the normal

[^3]range but the $\mathrm{Pt}-\mathrm{Ru}(3)$ bond length of $2.762(1) \AA$ is more than $0.2 \AA$ shorter than the average of the $\mathrm{Pt}-\mathrm{Ru}(1)$ and $\mathrm{Pt}-\mathrm{Ru}(4)$ distances (av. $2.971 \AA$). This reflects the fact that the $\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(4)-\mathrm{P}(1)$ rhombus is compressed along the $\mathrm{Ru}(3) \ldots \mathrm{P}(1)$ diagonal to accommodate a strong $\mathrm{Pt}-\mathrm{P}(1)$ interaction, and short $\mathrm{Ru}(1)-\mathrm{P}(1)$ $(2.322(3) \AA)$ and $\operatorname{Ru}(4)-\mathrm{P}(1)(2.330(3) \AA)$ bonds such that the angles $\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(4)\left(94.79^{\circ}\right)$ and $\mathrm{Ru}(1)$ -$\mathrm{P}(1)-\mathrm{Ru}(4)\left(126.83^{\circ}\right)$ are consistently larger than $\mathrm{P}(1)$ -$\mathrm{Ru}(1)-\mathrm{Ru}(3)$ (68.68°) and $\mathrm{P}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(3)\left(69.26^{\circ}\right)$. The PPh_{3} ligand occupies a cis position with respect to the OH group of the phosphinidene. The ${ }^{31} \mathrm{P}$ NMR spectrum of 5 shows two doublets in both the phosphinidene and phosphine regions indicating the presence of two isomers in solution. The similarity of J_{PP} and J_{PtP} coupling constants and ${ }^{31} \mathrm{P}$ chemical shifts in these isomers suggests that they differ only in the location of the phosphine in the $\mathrm{P}(2)$ or $\mathrm{C}(51)$ sites shown in Fig. 2. The $\mathrm{P}-\mathrm{O}$ distance ($1.604(5) \AA$) indicates a predominantly single bond and is consistent with the presence of an-OH moiety. The hydroxyphosphinidene group behaves as a μ_{4}-ligand in this case, capping three Ru atoms and the Pt atom in the octahedral $\mathrm{Ru}_{4} \mathrm{PtP}$ core. Although 5 is structurally analogous to homopentanuclear clusters such as $\mathrm{Ru}_{5}(\mathrm{CO})_{15}\left(\mu_{4}-\mathrm{PPh}\right)$ [1b, [19]], mixed metal pentametallic phosphinidene clusters are rare and there are no examples of such molecules with $\mu_{4}-\mathrm{POH}$ ligands.

As the first $\mu_{3}-$ and μ_{4}-hydroxyphosphinidene clusters of ruthenium 2 and 5 represent members of a new class of organometallic acids. Furthermore, the conversion of 2 to the phosphorus monoxide cluster anion 4 via deprotonation indicates the potential for a novel acid-base and coordination chemistry. Application of the synthetic strategies described herein to the generation of a broader range of hydroxyphosphinidene and phosphorus monoxide clusters as well as coordination complexes of anionic "metallated phosphine oxides'" such as $\left[\mathrm{Ru}_{4}(\mathrm{CO})_{12}\left(\mu_{3}-\mathrm{PO}\right)\right]^{-}$is underway.

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada for financial support and Dr. S.-M. Peng in the Department of Chemistry at National Taiwan University for the crystal structure of compound 3.

References

[1] D. Buchholz, G. Huttner, W. Imhof, O. Orama, J. Organomet. Chem. 388 (1990) 321.
[2] K. Natarajan, L. Zsolnai, G. Huttner, J. Organomet. Chem. 209 (1981) 85.
[3] A.J. Carty, Adv. Chem. Ser. 196 (1982) 163.
[4] S.A. MacLaughlin, A.J. Carty, N.J. Taylor, Can. J. Chem. 60 (1982) 87.
[5] A.A. Cherkas, J.F. Corrigan, S. Doherty, S.A. MacLaughlin, F. van Gastel, N.J. Taylor, A.J. Carty, Inorg. Chem. 32 (1993) 1662.
[6] J.F. Corrigan, S. Doherty, N.J. Taylor, A.J. Carty, Organometallics 12 (1993) 1365.
[7] B.H.S. Thimmappa, J. Cluster Sci. 7 (1996) 1.
[8] H. Vahrenkamp, Adv. Organomet. Chem. 22 (1983) 169.
[9] R.D. Adams, in: The Chemistry of Metal Cluster Complexes; D.F. Shriver, H.D. Kaesz, R.D. Adams, Eds., VCH, New York, 1990, ch. 3.
[10] D. Buchholz, G. Huttner, L. Zsolnai, J. Organomet. Chem. 381 (1990) 97.
[11] K. Knoll, T. Faessler, G. Huttner, J. Organomet. Chem. 332 (1987) 309.
[12] G. Huttner, K. KnolI, Angew. Chem. Int. Ed. Engl. 26 (1987) 743.
[13] W. Wang, A.J. Carty, New J. Chem., in press.
[14] J.F. Corrigan, S. Doherty, N.J. Taylor, A.J. Carty, J. Am. Chem. Soc. 116 (1994) 9799.
[15] W. Wang, J.F. Corrigan, S. Doherty, G.D. Enright, N.J. Taylor, A.J. Carty, Organometallics 15 (1996) 2770.
[16] P.L. Goggin, in: G. Wilkinson, R.D. Gillard, J.A. McCleverty (Eds.), Comprehensive Coordination Chemistry, Pergamon, Oxford, vol. 2, 1987, and references therein.
[17] S.M. Peng, Y. Chi, W. Wang and A.J. Carty, unpublished results.
[18] A.G. Orpen, J. Chem. Soc., Dalton Trans., 1980, p. 2509.
[19] K. Natarajan, G. Huttner, Proc. Indian Acad. Sci. Chem. Sci. 91 (1982) 507.

[^0]: * Corresponding author. Fax: $+1-16139578850$.

[^1]: ${ }^{1}$ Selected spectroscopic data for 2: IR: $\nu(\mathrm{OH})(\mathrm{KBr}) 3583 \mathrm{~cm}^{-1}$; $\nu(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2100 \mathrm{w}, 2062 \mathrm{vs}, 2055 \mathrm{~s}, 2045 \mathrm{~m}, 2017 \mathrm{~m}, 1988 \mathrm{w}$ cm^{-1}. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 498.6(s). Anal. Calcd for $\mathrm{C}_{13} \mathrm{HO}_{14} \mathrm{PRu}_{4}: \mathrm{C}, 19.13 ; \mathrm{H}, 0.12$. Found: $\mathrm{C}, 19.14 ; \mathrm{H}, 0.10$.

[^2]: ${ }^{2}$ X-ray data were collected with a Siemens CCD detector using the omega scan mode and refinement was carried out with the NRCVAX system of programs for 2 and 5 and SHELXTL PLUS for 3. Weights based on statistics were used for all the cases. The data for 2 were collected up to a 2θ maximum of 57.5° at -150°. Of 23858 reflections measured 5388 were unique (4550 with $I>$ $2.5 \sigma(I))$. All nonhydrogen atoms were refined anisotropically. The hydrogen atom was located from the difference map and refined with half occupancy varying only the thermal parameter. The refinement (based on F_{obs}) converged to $R=0.020$ and $R_{w}=0.020$. Crystal data for 2: $\mathrm{C}_{13} \mathrm{HO}_{14} \mathrm{PRu}_{4}, M=816.40$, monoclinic, space group P $2_{1} / n, a=9.322(1), b=14.174(1), c=15.927(1), \beta=98.71(1)^{\circ}$, $V=2080.2(2) \AA^{3}, Z=4, \mu=29.40 \mathrm{~cm}^{-1}, D_{c}=2.61 \mathrm{~g} \mathrm{~cm}^{-3}$.
 ${ }^{3}$ Selected spectroscopic data for 3: IR: $\nu(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2099 \mathrm{w}$, $2061 \mathrm{vs}, 2053 \mathrm{~s}, 2043 \mathrm{~m}, 2014 \mathrm{~m}, 1987 \mathrm{w} \mathrm{cm}{ }^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $3.82\left(\mathrm{~d}, J_{\mathrm{PH}}=14.9 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 519.55 .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 519.75\left(q, J_{\mathrm{PH}}=14.7 \mathrm{~Hz}\right)$. X-ray data for 3 were collected up to a 2θ maximum of 51.4° at 23°. Of 9966 reflections measured 3841 were unique (3424 with $I>3.0 \sigma(I)$). All nonhydrogen atoms were refined anisotropically. The refinement (based on $F_{\text {obs }}$) converged to $R=0.023$ and $R_{w}=0.023$. Crystal data for 3 : $\mathrm{C}_{14} \mathrm{H}_{3} \mathrm{O}_{14} \mathrm{PRu}_{4}, M=830.40$, monoclinic, space group $\mathrm{P} 21 / c$, $a=15.602(1), \quad b=9.348(1), \quad c=15.992(1), \quad \beta=104.04(1)^{\circ}, \quad V=$ $2262.7(6) \AA^{3}, Z=4, \mu=27.56 \mathrm{~cm}^{-1}, D_{i}=2.44 \mathrm{~g} \mathrm{~cm}^{-3}$.

[^3]: ${ }^{4}$ Selected spectroscopic data for 5: IR: $\nu(\mathrm{OH})(\mathrm{KBr}) 3065 \mathrm{~cm}^{-1}$; $\nu(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2086 \mathrm{w}, 2053 \mathrm{vs}, 2048 \mathrm{~s}, \mathrm{sh}, 2032 \mathrm{vw}, 2020 \mathrm{~m}, 1979 \mathrm{w}$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.46-7.54(\mathrm{~m}) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $488.52\left(d, J_{\mathrm{PP}}=10.2 \mathrm{~Hz}, J_{\mathrm{PtP}}=635.6 \mathrm{~Hz}\right), 483.10\left(\mathrm{~d}, J_{\mathrm{PP}}=11.0 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{P} \mathrm{P}}=644.7 \mathrm{~Hz}\right), 33.51\left(d, J_{\mathrm{PP}}=11.1 \mathrm{~Hz}, J_{\mathrm{PtP}}=1603.1 \mathrm{~Hz}\right)$, $33.42\left(d, J_{\mathrm{PP}}=10.5 \mathrm{~Hz}, J_{\mathrm{P} I \mathrm{P}}=1613.2 \mathrm{~Hz}\right)$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{16} \mathrm{O}_{14} \mathrm{P}_{2} \mathrm{Ru}_{4} \mathrm{Pt}: \mathrm{C}, 29.23$; $\mathrm{H}, 1.27$. Found: C, 29.18; H, 1.22.
 ${ }^{3} \mathrm{X}$-ray data for 5 were collected up to a 2θ maximum of 50.0° at -100° using the omega scan mode. Of 7428 reflections measured 5184 were unique (4103 with $I>2.5 \sigma(I)$). 125 reflections with $2 \theta<50.0^{\circ}$ were missed. All nonhydrogen atoms were refined anisotropically. The refinement (based on $F_{\text {obs }}$) converged to $R=$ 0.034 and $R_{H^{\prime}}=0.040$. Crystal data for 3: $\mathrm{C}_{31} \mathrm{H}_{16} \mathrm{O}_{14} \mathrm{P}_{2} \mathrm{Ru}_{4} \mathrm{Pt}$, $M=1233.77$, triclinic, space group $\mathrm{P} \overline{1}, a=10.176(1), b=13.204(1)$, $c=14.395(1), \quad \alpha=72.86(1)^{\circ}, \quad \beta=88.13(1)^{\circ}, \quad \gamma=85.23(1)^{\circ}, \quad V=$ $1841.8(5) \AA^{3}, Z=2, \mu=55.50 \mathrm{~cm}^{-1}, D_{c}=2.30 \mathrm{~g} \mathrm{~cm}^{-3}$.

